Nonlinear and Non-gaussian State Estimation: a Quasi-optimal Estimator

نویسنده

  • Hisashi Tanizaki
چکیده

The rejection sampling filter and smoother, proposed by Tanizaki (1996, 1999), Tanizaki and Mariano (1998) and Hürzeler and Künsch (1998), take a lot of time computationally. The Markov chain Monte Carlo smoother, developed by Carlin, Polson and Stoffer (1992), Carter and Kohn (1994, 1996) and Geweke and Tanizaki (1999a, 1999b), does not show a good performance depending on nonlinearity and nonnormality of the system in the sense of the root mean square error criterion, which reason comes from slow convergence of the Gibbs sampler. Taking into account these problems, we propose the nonlinear and non-Gaussian filter and smoother which have much less computational burden and give us relatively better state estimates, although the proposed estimator does not yield the optimal state estimates in the sense of the minimum mean square error. The proposed filter and smoother are called the quasi-optimal filter and quasi-optimal smoother in this paper. Finally, through some Monte Carlo studies, the quasi-optimal filter and smoother are compared with the rejection sampling procedure and the Markov chain Monte Carlo procedure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Quasi-likelihood Based on Kernel Smoothing for Nonlinear and Non-Gaussian State-Space Models

This paper considers parameter estimation for nonlinear and non-Gaussian state-space models with correlation. We propose an asymptotic quasilikelihood (AQL) approach which utilises a nonparametric kernel estimator of the conditional variance covariances matrix Σt to replace the true Σt in the standard quasi-likelihood. The kernel estimation avoids the risk of potential miss-specification of Σt ...

متن کامل

Kalman Filtering with State Constraints: A Survey of Linear and Nonlinear Algorithms

The Kalman filter is the minimum-variance state estimator for linear dynamic systems with Gaussian noise. Even if the noise is non-Gaussian, the Kalman filter is best linear estimator. For nonlinear systems it is not possible, in general, to derive the optimal state estimator in closed form, but various modifications of the Kalman filter can be used to estimate the state. These modifications in...

متن کامل

Kalman Filtering with State Constraints

The Kalman filter is the optimal minimum-variance state estimator for linear dynamic systems with Gaussian noise. In addition, the Kalman filter is the optimal linear state estimator for linear dynamic systems with non-Gaussian noise. For nonlinear systems various modifications of the Kalman filter (e.g., the extended Kalman filter, the unscented Kalman filter, and the particle filter) have bee...

متن کامل

Statistical analysis of non-linear diffusion process

We study the problem of statistical inference of continuous-time diffusion processes, and develop methods for modeling threshold diffusion processes in particular. We derive the limiting properties of the quasi-likelihood estimator. We also propose a quasi-likelihood ratio test statistic for testing threshold diffusion process against linear alternative. We begin in Chapter 1 with an introducti...

متن کامل

Convergence Properties of Autocorrelation-Based Generalized Multiple-Model Adaptive Estimation

In this paper a generalized multiple-model adaptive estimator is presented that can be used to estimate the unknown noise statistics in filter designs. The assumed unknowns in the adaptive estimator are the process noise covariance elements. Parameter elements generated from a quasi-random sequence are used to drive multiple-model parallel filters for state estimation. The current approach focu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998